
Photocount statistics of gaussian light of arbitrary spectral profile

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1972 J. Phys. A: Gen. Phys. 5 682

(http://iopscience.iop.org/0022-3689/5/5/010)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/5/5
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Gen. Phys., Vol. 5, May 1972. Printed in Great Britain 

Photocount statistics of gaussian light of arbitrary 
spectral profile 

S K SRINIVASAN and S SUKAVANAM 
Department of Mathematics, Indian Institute of Technology, Madras-36, India 

MS received 20 April 1971, in revised form 8 November 1971 

Abstract. A general method of deriving the generating function of the photocounts due to 
gaussian light of arbitrary spectral profile is presented. The eigenvalues of the basic integral 
equation corresponding to a general real-valued autocorrelation function are related to the 
usual infinite product representation of the generating function of the photocounts. The 
integral equation is solved by the Laplace transform technique. The eigenvalues are 
determined by imposing analyticity requirement on the Laplace transform and the eigen- 
values are identified to be the zeros of an alternant. By appropriate parametrization and 
multiplication by an alternant the eigenvalues are directly related to the zeros of an entire 
function. By the use of the Hadamard factorization theorem the generating function is 
identified to be the reciprocal of the entire function evaluated at a chosen point. The method 
is extended to cover the superposition of two incoherent beams. A further generalization 
along the same lines leads to the determination of the generating function corresponding 
to a superposition of beams of arbitrary spectral profile centred about arbitrary frequencies. 

1. Introduction 

Photocounting analyses are finding increasing applications not only in optical spectro- 
scopy but in other realms like turbulence. The usual method of arriving at the photocount 
distribution, essentially due to Mandel (1963), consists in observing that the photocounts 
are governed by a Poisson distribution with parameter crE(T) where c1 is the photo- 
efficiency of the detector and 

where T is large compared to the coherence time of the incident beam and Z(t) is the 
intensity of the incident beam. The photocount distribution is arrived at by making an 
ensemble average of the Poisson distribution over E. This method has been successfully 
employed for deriving the various statistical characteristics of the photocount distribu- 
tion, (see, for example, Jakeman and Pike 1969 and Perina and Horak 1969). Jakeman 
and Pike (1969) have presented a table containing exhaustive information regarding the 
present state of knowledge of photocount statistics. In recent letters, Troup and Lyons 
(Troup and Lyons 1969, Lyons and Troup 1970) have presented a method of using 
counting techniques for light beams of arbitrary bandwidth (see also Arecchi 1965 and 
Arecchi et al 1966) by using modulation techniques. So far, the attempts to generalize 
the distribution to arbitrary time intervals have been confined to gaussian beams with 
lorentzian spectral profiles. In view of the importance of photocount statistics, it is 
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worthwhile to examine the feasibility of arriving at  the photocount distribution of 
gaussian light beams of arbitrary spectral profile and centre frequencies. This would 
enable us to make predictions about mixing of beams of different spectral and coherence 
characteristics. In this paper, we assume that the autocorrelation function of the analytic 
signal of frequency wo is given by 

E{  V(t)V*(t’)} = f(lt-t‘l)expio,(t-t’) (1.2) 
where f is a real valued function defined on the positive axis. Since it is reasonable to 
assume that f -+ 0 for large values of its argumment, there is, therefore, a Laplace 
transform f* off: We shall outline the method of arriving at  the generating function 
governing the photocounts. Assuming that f * ( z )  = g(z)/h(z) where g(z) and h(z) are 
polynomials of degree less than n and equal to n respectively, we note that f ( t )  is of the 
form 

(1.3) 

so that f(t) is a combination of lorentzian as well as Poisson profiles. It is possible to 
extend the result to the case when f *  has an infinite number of poles, the sequence of 
poles having no limit point in any finite part of the plane (see concluding part of 0 2). 
However, the method presented in this paper is not applicable to the case where f* is 
an entire function. A simple example is provided by the light passed through a mono- 
chromator, in which case the output is always band-limited. It may be worthwhile in 
this context to examine the applicability of some of the methods of solving similar 
integral equations encountered in the theory of dams and storage systems (see Srinivasan 
1971 and Cohen 1969). 

The layout of the paper is as follows. We present in $ 2 the general method ofarriving 
at the generating function of the photocounts corresponding to a gaussian beam of 
arbitrary spectral profile with a fixed centre frequency. In 0 3, we deal with the super- 
position of two incoherent beams. This is followed in $ 4  by a complete analysis of the 
photocounts of beams characterized by a general complex autocorrelation function. 

2. General theory of photocounts of an incoherent gaussian beam 

At the outset, we observe that the individual photocounts constitute a stochastic point 
process on the time axis. However, by virtue of the mutual independence of the counting 
device as well as the intensity of the beam, it is eminently reasonable to characterize the 
counting process as a doubly stochastic Poisson process?. If V( t )  is the analytic signal 
the positive random variable characterizing the doubly stochastic process is given by 

Z ( t )  = V*(t)V(t). (2.1) 
We shall assume that V(t )  is a stationary gaussian random process. Denoting the 
generating function governing the number of photocounts in any interval (0, T )  by 
Q(s, T),  we have 

t In fact, doubly stochastic Poisson processes were first introduced by Cox (1955) in connection with the study 
of the stops of a loom due to weft breaks. 
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To evaluate the expectation value implied by (2.2), we seek a Loeve expansion of the 
random variable V( t )  in terms of an orthogonal set of functions over the interval (0, T )  
(see Loeve 1963 and Davenport and Root 1958) 

V( t )  = 1 c m 4 m ( t )  
m 

where the random coefficients {C,} satisfy the relation 

E{C;C,} = Timbm, 

(2 .3 )  

(2.4) 

and the 4m are the eigenfunctions corresponding to the eigenvalues Am of the integral 

(2.5) 

where 

r(t, t’) = E{  V(t)V*(t‘))  (2.6) 

is the unnormalized autocorrelation function characterizing the beam. We note that the 
random coefficients { C m }  have a complex distribution 

Probability({ C,}) = n I 1 exp( -A) IC I 2  
m =Am A m  

(2.71 

Using the representation (2.7), we can express the generating function of the photocounts 
in terms of the eigenvalues Am 

Q(s, T )  = n(1+ s&)- ’. 
k 

An explicit expression for the generating function has been obtained by Jakeman and 
Pike (1968) when r is given by 

r(t, t’) = Iexp{ -rJt-t‘l +iw,(t-r’)). (2.9) 

We shall demonstrate in this paper the possibility of obtaining Q(s, T )  explicitly for any 
arbitrary r. In this section, we shall assume that r is of the form 

r(t, t’) = f(lt-t’l)exp{iwo(t-t’)} (2.10) 

where f is a real valued function defined on the positive real axis. In the final section, we 
shall remove the reality condition to describe the superposition of light beams of 
different centre-frequencies. Setting 

(2.1 1) @At) = 4 k  exp(iw,t) 
we find that @,(t) satisfies the equation? 

(2.12) 

To solve the above integral equation, we introduce the Laplace transform of @ by 

(2.13) 

t From here on, we drop the suffix k for notational convenience. 
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We shall assume that f has a Laplace transform f * .  Substituting in equation (2.12), the 
inversion formula 

a + i m  

f(lt-t'l) = - s f*(z)exp(zlt-t'l)dz 
27~i a - i m  

(2.14) 

where o is real and positive, we obtain 

We note that f*(z) is analytic in the half plane Re z > 0 by virtue of the bounded nature 
of the autocorrelation function as defined by (2.10). To make further progress, we shall 
assume that .f*(z) is a rational function of z ,  that is 

(2.16) 

where h(z) is a polynomial of degree n and g(z) a polynomial of degree not exceeding 
(n- 1). We evaluate the line integral occurring on the left hand side of equation (2.15) 
by choosing o to be greater than max(0, Re p ,  -Re p ) .  We observe that $ is an entire 
function of its argument and using the definition we obtain the following estimate for 
large Re p :  

1-exp(-RepT) 
IRepl >> 1. 

Re P 
I$(PH = (2.17) 

Using the estimate (2.17, we evaluate the line integral corresponding to  the second and 
the fourth terms of the integrand by closing to the right and conclude that it is zero. 

Next, we observe that the poles of f * ( z )  are due to the zeros of h(z) which are neces- 
sarily located in the half plane Re z < 0. Assuming that h(z) has m distinct zeros at the 
points z l ,  z 2 , .  . . , zm with respective multiplicities I, ,  l,, I , ,  . , , , I ,  we evaluate the line 
integrals corresponding to  the first and third terms on the left hand side of equation (2.15) 
by converting them into contour integrals. We thus obtain 

where 

I k - i -  j 
F .  = 

Jk 

(2.19a) 

(2.19b) 

(2.20a) 

(2.20b) 
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Solving for $(p)  we obtain 

(2.21) 

Observing that $(p) is an entire function and that the denominator is a polynomial of 
degree 2n, we note that the numerator should vanish precisely at  the 2n zeros of the 
denominator. These conditions on the numerator yield a set of 2n equations for the 
2n unknown constants Fjk and Gjk occurring in equations (2.19b) and (2.20b). These 
conditions result in the form 

[ D ] K =  0 

where K is a 2n dimensional vector whose components are given by 

for j < n 

for j > n 

where 

GL = j - 1 - L e  p = e + i  Lo < j  G 

e = 0,1,2, .  . . , ( m - i )  

y = j -n-1- -Le  

e = 0 , 1 , 2 , .  . . , ( m - i )  

j G n  
p = e + i  Le < ( j - 4  G L ~ + I  

j > n  
and 

Le = 1, + I 1  + . . . + 1, L, = I ,  = 0 L,  = n. 

The elements of [D] are given by 

(2.22) 

( 2 . 2 3 ~ )  

(2.236) 

( 2 . 2 3 ~ )  

(2.2 3d)  

(2.24) 

where p l ,  p 2 ,  . . . , p2n,  the zeros of Ah(p)h( - p )  - g(p)h( - p )  - g( - p)h(p)  may be regarded 
as the 2n branches of a multiple-valued function of A defined by 

(2.25) 

We notice that equation (2.22) represents a homogeneous system of equations for the 
components of K and in order that the solution be nontrivial, we have 

ID1 = 0. (2.26) 

Since A is the only unknown parameter in the determinant, the above equation is the 
eigenvalue equation. Since p i  are functions of A defined by equation (2.25), it is clear there 
are an infinite number of eigenvalues. If we denote ID1 by F( l /L ) ,  it is easy to see that F 
is not an entire function of its argument in view of its not returning to its original value 
if we go along any arbitrary closed contour containing the origin. However, it can 
easily be proved that F is an analytic function in any bounded domain of the cut ( plane 
(5 = l /A) .  Thus the nonanalytic property in the 5 plane arises essentially from the 
multiple-valued nature of the function defined by equation (2.25). However, it is easily 

Ah(P)h( - P) - g@)h( - P) - g( - P)h(P) = 0. 
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seen that the determinant is an alternant with reference to the parameters p l ,  p 2 , .  . . , p z n  
and the different values of ID(<)l corresponding to the different branches are obtained 
by the permutations of the parameters p l ,  p z ,  . . . , p z n .  By the characteristic property 
of the determinant, all the values are the same except for the sign. Thus we can construct 
an entire function from ID(()l by multiplying or dividing it by an appropriate alternant in 
p l ,  p 2  , . . . p z n .  Defining P(5)  by 

(2.27) 

where the elements of the determinant 1Do(5)1 are given by 

IDdOIij = &-’ i , j  = 1,2,. . . )  2n. (2.28) 

We note that 1Do(5)1 is a factor of ID(()[ and zeros of IDo((] do not contribute to the 
eigenvalues of the original integral equation (2.12). Now P(5)  is an entire function and its 
zeros are directly related to the eigenvalues of the basic integral equation (2.12). We 
can obtain a representation for P(5) by using the Hadamard-Weierstrass theorem 
relating to the canonical representation of an entire function (see, for example, Hille 
1962). To do this, we first determine the order of P ( 0 .  We notice that the order of P ( 5 )  
is related to the behaviour of pi for large values of 5. If the degree of g(p) is m (which is 
always less than n), it follows from equation (2.25) that for large 151 : 

IpI N C)511’2(n-m) (2.29) 

where C is a positive constant. Observing that the dependence of P(5) on 5 ,  which, in 
turn, is related to the dependence of ID(CJ)l on CJ, is dominated by terms of the form 
exp( -piT), we conclude that the order of the entire function P(5) is at most ). 

Thus we have the representation for P(5)  

(2.30) 

where the constant P(0) is determined using equation (2.27). Comparing the above 
representation with equation (2.8), we obtain the following explicit expression for the 
generating function 

(2.3 1) 

The results corresponding to the special case dealt with by Jakeman and Pike (1968) 
and Bedard (1966) can be easily deduced from (2.31). As an example we derive the 
generating function for the case of gaussian-lorentzian light. In this case, the auto- 
correlation function is given by 

E{ V(t)V*(t’)) = f exp( - rj t - t’l + ioo(t - t‘)} (2.32) 

where I is the average intensity, oo the centre frequency and r the halfwidth at half 
height. The relevant integral equation is 

JOT I exp( - rlt - t’l)O(t) dt = AO(t‘). (2.33) 
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Taking Laplace transform of both sides of (2.33) and solving for I&), we get 

(2.34) 

To preserve the analyticity of $(p),  we now demand that the numerator of the right hand 
side of (2.34) should vanish at the two zeros p1 and p z  of the denominator. This yields 

(r - PI) expl -(r + P d T M  - r) + 0- + PI)$K) = 0 (2.3 5a) 

(F-Pz)exP{ -(r+p,)T)$(-r)+(r+Pz)$(r) = 0. (2.35b) 

For nontrivial $( - r) and $(F), the determinant of the coefficients should vanish. This 
yields 

Ir(r - P) ~ X P {  - (r +PIT}$( - r) + (r + ~)$(r)i 
21-1 - ;.(rz - p z )  

*(PI = 

(2.36) 

We divide D(() by a suitable alternant in p1 and p z  in order to obtain an entire function 
P(() .  In this case, the alternant Do(()  is just p 2  -p l  . Therefore, P(()  is given by 

Putting 5 = 0 in this, we get 

when5 = - s  

We therefore have 

= 2 r  e-rr{ cosh esT+i( :+;) sinh 

From (2.31), (2.38) and (2.40), we get 

Q(s, T )  = err {cosh c s T + i (  sinh cS.) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

which agrees with the result arrived at by Jakeman and Pike (1968). 
We note that the technique presented above yields the explicit solutions if f * ( z )  has 

a Mittag-Leffler expansion provided f * ( z )  -+ 0 at least as fast as z -  for large values of 
IzI. In this case, we note that in the process of evaluation of the integral corresponding to 
the first and the third terms on the left hand side of (2.15), we can close the contour by a 
semicircular arc of radius R (R being so chosen that it does not pass through any of the 
poles). For any given E > 0 ( E  being small), it is possible to make the modulus of the 
contribution of the integral along the circular arc less than by choosing R sufficiently 
large. Such a determination of R will give rise to (say) n poles within the contour so 
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chosen. Without loss of generality, these can be chosen to be located at  the points 
zl, z,, . . . , z ,  with multiplicities I , ,  I , ,  . . . , I,. From this point onwards, the arguments 
that lead to the determination of the eigenvalues A are applicable verbatim since this 
corresponds to an approximation off*(z) by a rational function. Thus the only case that 
is left out is when g*(z) has a transcendental component. In this case, it is not clear how 
the eigenvalues could be determined. 

3. Superposition of two incoherent lorentzian beams 

We next proceed to discuss the photocounts of a mixture of two incoherent beams. 
This case is particularly interesting when the component beams are linearly independent 
and are completely polarized orthogonal with respect to each other, their effect being the 
same as that of partially polarized light, according to a well known result due to Mandel 
(1963). We observe that equations (2.1H2.8) are still valid provided we define V( t )  by 

V t )  = V,(t)+ V2(t) (3.1) 
where Vl(t) and V2(t) are the analytic signals corresponding to the two superposed beams. 
For purposes of illustration, we assume that V,(t) and V2(t) are a pair of statistically 
independent gaussian processes and that their corresponding autocorrelation functions 
are given by 

E{Vl(t)VT(t’)} = I, exp{ioo(t-t’)-rJt-t’l} (3.2) 
E{ V2(t)Vt(t’)} = I, exp{iw,(t-t’)-r’lt-t’l}. (3.3) 

We assume that the second beam has its width equal to zero (r’ = 0) for simplicity in 
purposes of illustration although no computational difficulty is experienced if r‘ # 0. 

The basic integral equation in this case is given by 

where 

@(t) = 4(t) exp(iw,t). (3.5) 

Proceeding as before, we find that the Laplace transform $ ( p )  of @(t) is given by 

$ ( p )  = (-I,{ i(w0 - wq) - ( r  - P ) M  - l- - i(w0 - wq)) 

x [exp - T{ i b 0  - wq) + (r + P))I + {i(wo - 0,) + (r + P I >  
x Il+(r - i(wo - 0,)) + 12{i(w0 - wq) + (r + p ) }  

x {i(%-wJ-(r-P)} ((1 --e-pT)/p}$(0)) 

x [{ i(wo - wq) - (r - p ) }  { i(wo - wq) +(r + p ) }  + 2rI l ] -  (3.6) 

We notice that the denominator of the right hand side of equation (3.6) has two zeros p ,  
and p ,  given by 

R + p , T  = (y2-2yT115)l/2 (3.7a) 

R+p,T = -(y2-2yT115)’/2 (3.7b) 
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where 

R = i(wo-w,)T I ,  - - r ~ .  (3.7c) 

As before, we insist that the numerator of the right hand side of equation (3.6) should 
vanish at p ,  and p2. These conditions yield 

We next observe that there are three unknown constants corresponding to the values of 
$ at the points 0, (r - i(w, - wq)) and ( - r - i(w, - w,)). Apart from equations (3.8) and 
(3.9), a third equation can be obtained by evaluating equation (3.6) at  p = 0 

- I ,  { i(w, - 0,) - r} exp[ - T{ i(w, - wq) + I-}]$( - r - i(o, - U,)) 

+ Il{i(oo - wq) + r}$(r - i@oo - 0,)) 
+ [ ( T ~ 2 - ~ ) { i ( ~ o - ~ q ) + ~ } { i ( ~ o - w q ) - ~ }  -2rf,]$(O) = 0. (3.10) 

Equations (3.8H3.10) are a set of homogeneous equations for the three constants 
$( - r - i(wo - wJ), $(r - i(w, -U,)) and $(O). In order that the solution be nontrivial, 
we have 

D(<) = - If exp( - y )  

X 

where 

(€--)e-‘* (€+I-) z2(c2-r2)(i )/(e - Q / T )  

(- E - r) ec fT  Z2(e2 - r2)( 1 -eRCcT)/( - E -R/T) 

(R/T-r)5 e-” (R/T+r)< { ( < T I 2 -  l)(R2/T2-r2)-2rl,<} 
( - + r) = o  

(3.11) 

(3.12) 

We note that the determinant ID(5)l occurring in equation (3.1 1)is an alternating function 
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of p1 and p z  and hence it is easy to construct an entire function P(5) by dividing the 
determinant by p1 - p 2  

The value P(0) can be calculated from equations (3.11) and (3.13) 

P(O) = 213- rz-l . ( 
Thus, we have 

. (3.13) 

(3.14) 

(c~-rz){1-exp(R-~,T)} e'sT 

(3.15) 
€,- r 

6s - (WT) 
+ (c: - rZ) { 1 - exp(R - t,T)) 

where 
E, = (r2 + 2 r l , ~ ) ~ ' ~ .  

We can now consider two special cases : 
(i) R = 0. r # 0. This corresponds to two beams with identical centre frequencies. 

In this case, the generating function is given by 

G(S, T )  = 4r3€, e? 4 r r , ( r 2 ( ~ i Z ~ +  1)+2r- i ,~)  

sinhcsT-2rsl2 (€:-r2) I 
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(11) L? = 0, r = 0. This corresponds to the case of both the beams having zero width 
centred about the same frequency. In this case, the generating function is 

G(s, T )  = i(sf,T+l)(sl,T+l)}-’. (3.17) 

The procedure discussed above needs modification if one of the components of the 
mixture is a coherent beam. Since a coherent beam is nothing but a harmonic signal with 
a random phase the mixture can no longer be described by a complex field whose real 
and imaginary parts represent a pair of gaussian random processes. In such a case, we 
seek an expansion of the amplitude corresponding to the mixture on the lines followed 
by Jakeman and Pike (1969) and the expression for the generating function turns out to 
be a little more complicated than equation (2.6) by a factor depending on the explicit 
form of IC/@). However, this does not offer any computational difficulty as long as the 
factor has a Laurent expansion about the point 1. The explicit method of calculation 
for the general case will be discussed in a separate paper. 

4. Photocounts of beams with complex autocorrelation functions 

We now proceed to consider the superposition of gaussian beams of arbitrary bandwidth 
as well as centre frequencies. For the purpose of this discussion, equations (2.1H2.8) 
are still valid. The autocorrelation function shall be assumed to be of the form 

r(t, t ’ )  = f , ( t- t’)+f,(t- t’)  (4.1 1 

where , f l  and f 2  are real valued, even and odd functions respectively. These conditions 
ensure the hermitean nature of the autocorrelation function. We wish to solve the 
integral equation (2.5), using the explicit form of r(t, t‘) given by equation (4.1). 

Defining f T  and f i  as the Laplace transforms of f, and fi and substituting the 
inversion formulae for f ,  and f ,  into equation (2.5), we obtain the following equation 
for the Laplace transform $ of 4 : 

We again assume that f T  and f T  are rational functions of z 

(4.3a) 

(4.3b) 

h , ,  h,, h ,  and h, are polynomials of z, h ,  of degree m and h ,  of degree not greater than 
(m  - l), h, of degree n and h ,  of degree not exceeding (n - 1). As before, the line integrals 
involving $@) in the integrand are seen to vanish. The poles off:  and f i  are due 
respectively to the zeros of h2(z) and h4(z) which again are located in the half plane 
Re z < 0. We assume that h2(z) has q distinct zeros at the points zl, z 2 ,  . . . , zq with 
multiplicities I , ,  1,, . . . , I, and h4(z) has r distinct zeros at the points z’, , z;  . . . . . z: with 
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multiplicities I ; ,  1;,  . . . , I , .  We proceed as before to evaluate the line integrals cor- 
responding to the terms (f:(z)+if,*(z))$(z) exp{(z-p)T}/(z-p) and (f:(z)-if;(z)) 
x $( -z)/(z+p) by converting them into contour integrals. We obtain 

where ak,  bk ,  a; and b; are given by 

( 4 . 5 ~ )  

(4.5b) 

(4.5c) 

(4.5e) 

(4.5h) 

Again observing that $(p) is an entire function and that the denominator on the right 
hand side of equation (4.4) is a polynomial of degree 2(m + n), we note that the numerator 
on the right hand side of (4.4) should vanish precisely at the 2(m+n) zeros of the de- 
nominator. These conditions on the numerator yield a set of 2(m+ n) equations for the 
2(m+n) unknown constants, Fjk,  Gjk ,  FJk and GJk occurring in equations (4.5). These 
result in the form 

[DIK' = 0 (4.6) 
where K' is a 2(m + n) dimensional vector whose elements are defined in a manner quite 
analogous to equation (2.23) whilst the elements of [D] are expressed in the same manner 
as equation (2.24). From this point onwards, the steps run exactly parallel to those of 4 2 
and it is possible to construct an entire function P(<) whose representation is given by 
equation (2.30) and which is connected to the generating function by equation (2.31). 
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In special cases, it may turn out that the steps are even simpler than what appears 
from the general method described above. For insta.nce, the discussion in (j 3 relating to 
the mixing of two incoherent lorentzian beams is a special case where 

f,(t - t’) = I ,  exp( - r/ t - t’l ) cos w,(t - t‘) + I ,  cos o,(t - t’) (4.7a) 

f,(t-t’) = I ,  exp(-rlt-t’l)sin w,(t-t‘)+12 sino,(t-r’). (4.7b) 

As we have seen, this only gives rise to a 3 x 3 determinant and the steps leading to the 
solution are an obvious modification of the method presented in 0 2. 

In conclusion, we wish to observe that the photocount statistics of partially polarized 
beams can be regarded as having been explicitly solved since, as said earlier, a partially 
polarized beam can be regarded as equivalent to the superposition of two incoherent 
beams completely polarized orthogonally to each other, and linearly independent of 
each other. It is also worthwhile to note that the same method is applicable for the 
determination of the generating function of the n fold counting statistics. 
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